HOMOTOPY EQUIVALENT SPACES

Prof. Dr. Hana' M. Ali

OF THE SAME HOMOTOPY TYPE TOPOLOGICAL SPACES

Prof. Dr. Hana' M. ALi

DEFINITION:

Two topological spaces X and Y are said to be of the same homotopy type (or homotopy equivalent) and denoted by $X \simeq Y$, if there exist two continuous maps $f: X \to Y$ and $g: Y \to X$ such that:

$$g \circ f \simeq \mathcal{I}_X : X \to X \text{ and } f \circ g \simeq \mathcal{I}_Y : Y \to Y.$$

The maps f and g are called homotopy equivalences.

Note:

Recall, two topological spaces X and Y are said to be homeomorphic and denoted by $X \equiv Y$, if there exist two continuous maps $f: X \to Y$ and $g: Y \to X$ such that:

$$g \circ f = \mathcal{I}_X : X \to X \text{ and } f \circ g = \mathcal{I}_Y : Y \to Y.$$

That is, the homeomorphic spaces are of same homotopy type, but the converse need not to be true in general.

Example: Let $D^n = \{x \in \mathbb{R}^n | ||x|| \le 1\}$ is the *n*-disk of the Euclidean space \mathbb{R}^n and assume that $x_0 \in D^n$. We can deduce that $D^n \simeq \{x_0\}$ but they are not homeomorphic.

To explain that the constant map $C: D^n \to \{x_0\}$ and the inclusion map $i: \{x_0\} \to D^n$ form homotopy equivalences between the. In fact, each one of *C* and *i* is a continuous map and they satisfied:

$$C \circ i = \mathcal{I}_{\{x_0\}} \colon \{x_0\} \to \{x_0\} \text{ and } i \circ C \simeq \mathcal{I}_{D^n} \colon D^n \to D^n.$$

Since $C \circ i(x_0) = x_0$ and the continuous map $H: D^n \times I \to D^n$ that defined as; $H(x,t) = (1-t)x_0 + tx$, for all $x \in D^n$, play as a homotopy from $i \circ C$ into \mathcal{I}_{D^n} .

More generally, $\mathbb{R}^n \simeq \{x_0\}$.

Example: The unit $(n - 1) - S^{n-1} = \{x \in \mathbb{R}^n | ||x|| = 1\}$ is of the same type of $D^n - \{0\}$ (the closed *n* -disk of the Euclidean space \mathbb{R}^n minus the origin.

To show that the inclusion map $i: S^{n-1} \to D^n - \{0\}$ and the map $r: D^n - \{0\} \to S^{n-1}$ that defined as; $r(x) = \frac{x}{\|x\|}$, for all $x \in D^n - \{0\}$; form homotopy equivalences between S^{n-1} and $\in D^n - \{0\}$. In fact, each one of r and i is a continuous map and they satisfied: $r \circ i = \mathcal{I}_{S^{n-1}}$ and $i \circ r \simeq \mathcal{I}_{D^n - \{0\}}$.

THE REDUCED MAPPING CYLINDER

Prof. Dr. Hana' M. ALi

DEFINITION:

Given any continuous map $f:(X, x_0) \to (Y, y_0)$, (i.e. $f(x_0) = y_0$). The reduced mapping cylinder M_f of f is the space obtained from the disjoint union $(X \times I) \sqcup Y$ by identification $(x, 1) \in X \times I$ with $f(x) \in Y$, for every $x \in X$, (i.e. we will define an equivalence relation ~ on $(X \times I) \sqcup Y$ as; $(x, 1) \sim f(x)$ and letting; $M_f = (X \times I) \sqcup Y / \sim$ be the identification topological space that its topology induced from the identification map $q: (X \times I) \sqcup Y \to M_f$ that defined as;

$$q(x,t) = [(x,t)] = [x,t];$$

$$q(x,1) = [(x,1)] = [x,1] = [f(x)];$$

$$q(y) = [y], \text{ for all } (x,t) \in X \times I \text{ and } y \in Y.$$

For all(x, s) $\in X \times I$, $y \in Y$ and $t \in I$, we can define the following maps:

- 1. $i: (X, x_0) \to (M_f, [y_0])$ as; i(x) = [x, 0].
- 2. $j: (Y, y_0) \to (M_f, [y_0]) \text{ as}; i(y) = [y].$
- 3. $r: (M_f, [y_0]) \to (Y, y_0) \text{ as}; r(y) = [y] \text{ and } r[x, t] = f(x).$
- 4. $H: M_f \times I \to M_f$ as; H([y], t) = [y] and H([x, s], t) = [x, (1 t)s + t],

THEOREM: $(Y, y_0) \simeq M_f$.

As a homework deduce that, r is a homotopy equivalence.

THANK YOU FOR YOUR ATTENTION